
CS4530 Group 402 Project Report
Abhay Bisht, Ethan van Heerden, Liam Evans, Sam Phillippo

Feature Overview and User Manual

Our new feature for Covey.Town was the addition of vehicles. Players are able to
select either a skateboard, bike, or horse to roam around the map faster, as well as
participate in a new word-typing minigame as a means to do tricks on their
equipped vehicle. In order to build our project, download our code as a zip file (can
be found here), unzip it, and run npm install to install our project dependencies.
Then, in the townService directory, run the command npm start to start the
backend, and in another shell window, run the command npm run dev in the
frontend directory to start the frontend. After these processes finish, open the
localhost link to load into the town.

From here, you can see your character loaded into Covey.Town. At the top of the
map relative to the spawn point, there is an interactable area with the title “Vehicle
Rack”:

https://github.com/neu-cs4530/fall23-team-project-group-402/releases/tag/final-submission
https://github.com/neu-cs4530/fall23-team-project-group-402/releases/tag/final-submission


Once in this area, press the spacebar to open up the vehicle rack modal:

You can also hover over the info icon above for a small tutorial message:



Click on the appropriate “Equip” button for your desired vehicle to equip that
vehicle. After you dismiss the modal, you should see your player using the new
vehicle. You will then be able to transverse the map faster at different speeds
depending on what vehicle you have:

To unequip a vehicle, return to the vehicle rack and press the “Unequip” button
under the vehicle you currently have equipped.



In order to play the trick minigame, ensure the player has a vehicle equipped, and
then move the player to the interactable area titled “Trick Area” (located
immediately to the right of the vehicle rack):

Once in this area, press the spacebar to open up the game modal. Press “Start
Game” to start the game, and type in words as they are presented to score points.
After each correct word you type, you should see your player complete a trick on
their vehicle.



When time runs out, you will be prompted to enter 3-letter initials to save your
score, and then you will be brought back to the game homepage. From the
homepage, select the trophy icon to view the leaderboard:



There is both a “Current” tab to view the leaderboard for all players in the current
town session, as well as an “All Time” tab to view the top scores of all time in all
towns.

You can find our deployed app here.

https://four02-covey-town.onrender.com/


Technical Overview

Our project consists of three main sections: the vehicle implementation, the vehicle
rack implementation where players can equip and unequip vehicles, and our trick
mini game.

For our vehicle implementation, we initially had a Vehicle superclass and a subclass
for each vehicle, all of which was stored in the backend. Each vehicle subclass
simply stored its speed multiplier and its vehicle type (as a string), and then we had
getters for each value. However, due to some import issues, we decided to move
our Vehicle superclass into the shared types file and then implement concrete
instances of our superclass within the PlayerController file. This also meant that we
added associated ‘vehicle’ fields within the Player and PlayerController files, which
simplified our implementation and made it easier for the players to equip and
unequip vehicles. This was the right design because it follows OOD principles since
in the real world, players can have vehicles, so the player classes should have
vehicle fields as well.

In order to stay consistent with the look and feel of Covey.Town, we needed to
create custom sprites and animations based on the player’s vehicle. After designing
and creating our custom animations, we converted them to sprite atlases which we
were able to load into TownGameScene. In order to use these new atlases, some
abstraction was required, like renaming “misa” references to “walk”, and creating a
new “createMovementAnimations” function. Additional abstractions were made to
the PlayerController to use different animations/atlases based on the vehicle
property. This was the right design because it abstracted the logic for sprites and
movement animations which would make adding future vehicles easier.

For our vehicle selection rack implementation, our VehicleRackArea extends
InteractableArea in the backend, and our VehicleRackArea extends Interactable in
the frontend. Both implementations were designed from scratch since the
VehicleRack had a new type of Interactable behavior.

For our vehicle mini-game backend, we have a VehicleTrickGameArea that extends
GameArea, and the actual game implementation is within VehicleTrickGame. This
follows a very similar structure to the way TicTacToe was laid out, which ensures



that there is a distinction between the state of our game and the processes that
update our game state. On the frontend we have VehicleTrickAreaController which
extends GameAreaController, VehicleTrickArea which represents the main window
and start page of our game, and VehicleTrick which is the frontend rendition of our
game. By utilizing this layout, the code for the game area and the actual game itself
is separated and thus easier to debug. The VehicleTrickArea is somewhat similar to
TicTacToeArea since it also contains a wrapper and renders the page with the
leaderboard and observers, but our implementation also contains a new persistent
leaderboard and a fully redesigned UI. The actual VehicleTrick file is obviously very
different from the TicTacToeBoard file since they are both separate games.

For our VehicleTrickLeaderboard, we ended up designing this from scratch,
although chunks of logic are borrowed from the existing Leaderboard file. The
reason we decided to design this from scratch instead of building off of the existing
Leaderboard implementation is because even though both leaderboards utilize
GameResult values, the leaderboard for our VehicleTrick game has a different
GameResult structure with different columns and a different filtering logic as well.
We do not have winners or losers, just a player’s 3-letter initials and their score,
and as a result our GameResult structure and our leaderboard reflect this. Overall,
our vehicle rack and trick minigames utilized good design because they extended
existing classes such as InteractableArea and GameArea which didn’t introduce any
huge changes to the codebase as a whole.



Here is a diagram to help visualize our code changes:



Process Overview

Our group utilized many agile project management processes. After submitting our
revised project plan, we took all of our planned tasks and converted them into Jira
tickets on an Atlassian board. From there, we created epics based on our user
stories, and divided all of the tickets among the epics. Finally, we assigned the
tickets among the group members and split the tickets across 4 sprints (Sprint 0 to
Sprint 3). We used the T-shirt sizes for the tasks as point values, and made sure that
each member had an equal amount of points for each sprint. We configured the Jira
board to display the tickets for one sprint at a time. In each sprint, we had the
sections “Todo”, “In Progress”, “In Review”, and “Done” to help us manage our work
in the sprint and easily view our progress.

At the start of each sprint, we would have a virtual sprint kickoff meeting to ensure
that everyone was aware of the tasks to be completed, and any blockers that we
would have on each other. We also met in person every week after class on
Thursdays to touch base on our current status in the sprint, as well as any
questions or concerns we had about our tickets. We also created an iMessage group
chat in which we communicated on an almost daily basis. We used this group chat
to ask quick questions, clarify concepts, or to notify other group members that a PR
was ready for review. Once we were notified that a PR was ready for review, group
members would review the PR with an open mind, and aim to ask questions first
before requesting changes. This ensured that PR reviews were blameless and always
respectful of the author. We would typically review PRs within a day of them being
posted which made the feedback loop very seamless and helped us to complete our
tickets faster.

After each of our sprints ended, we would look at our Jira board for the current
sprint and see if there were any tickets not in the “Done” column. If there were, we
asked ourselves what unexpected circumstances caused this, and how much
additional time would need to be spent to complete those tickets in the next sprint.
This happened very irregularly for us, but when it did, we made sure that the group
members assigned these tickets were given all the help they needed to complete all
of their work. Here is a summary of what was planned to happen in each sprint and
what actually happened:



Sprint 0
The goal of Sprint 0 was mainly research to see how we could integrate our idea in
the codebase. We also planned to define our very basic vehicle data structure which
was important to many parts of our feature. All of these tasks were completed.

Sprint 1
For Sprint 1, we planned to create all of the sprites for the vehicles we were
bringing into Covey.Town. In addition, we wanted to do all of the backend work for
the vehicle rack, equipping vehicles, and adjusting the player’s speed based on any
vehicles they have equipped. All of the sprite work was completed, but we had two
tickets regarding equipping vehicles which were not completely finished yet. This
was mainly due to the fact that these two tickets blocked each other in different
ways and couldn’t be completely resolved especially since Sprint 1 was the shortest
sprint. As a result of this, we decided as a team to start our tickets on the first day
of each future sprint so that we could find these blockers earlier and resolve them.
We also agreed to communicate in the group chat ASAP when one of us was
blocked by something.

Sprint 2
Sprint 2 was a big sprint for us since our goal was to implement the sprite
movement animations, both the frontend and backend components of the trick
game, finish the fronted component of the vehicle rack, and improve our testing.
We fulfilled almost all of our goals here, besides creating the sprite for the vehicle
rack as it would be seen in the map. This was because the movement animations
took us longer than expected since we’ve never had to deal with them before.
However, we overall thought that our planning and execution process this sprint
was great as we got a ton of work done. We didn’t modify much of our processes for
the next sprint except for reassigning a ticket to ensure the animations would get
done.

Sprint 3
Since Sprint 3 was our last sprint, our goal was to finish all of the vehicle animations
and improve our UI/UX for the vehicle rack and the trick game. After our
experiences in our past sprints, we worked very efficiently since we started our
work on the first day and communicated with each other very often. Because of
this, we were able to finish all of our planned tasks and complete our feature.


